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REPORT No. 681 

THE UNSTEADY LIFT OF A WING OF FINITE ASPECT RATIO 
By ROBEBT T. JONES 

SUMMARY 

Unsteady-lijt functions for  wings of finite aspect ratic 
have been calculated by correcting the aerodynamic inertic 
and the angle of attack o f  the infinite wing. The calcula. 
tions are based o n  the operational method. 

The starting lijt of the finite wing i s  found to be on13 
slightly less than that of the injinite wing; whereas the 
final lijt may be considerably less. The theory indicates 
that the initial distribution of lijt i s  similar to the fina 
distribution. 

Curves showing the variation o f  lijt after a sudden unit 
change in angle of attack, during penetration of a sharp- 
edge gust,and during a continuous oscillation are given. 
Operational equivalents of these functions have been devised 
to faci'litate the calculation of lift under various conditions 
of motion. A s  an  application of these formulas, the 
vertical acceleration of a loaded wing caused by penetrating 
a gust has been calculated. 

INTRODUCTION 

The two-dimensional potential theory of airfoils in 
nonuniform motion was given by Wagner (reference 1) 
and has been extended to problems involving the motion 
of hinged or flexible airfoils by Theodorsen (reference 2) 
and Kussner (reference 3). 

In the case of steady motion, a correction is known to 
be necessary before the results of the two-dimensional 
theory can be applied to wings of finite aspect ratio. 
A theory for the unsteady lift of finite wings was devel- 
oped in reference 4. This theory has since been some- 
what improved mathematically by making use of 
operational methods in the solution of the integral 
equations. (See reference 5.) The present report 
combines this previous work and extends the theory to 
show the effects of gusts. 

THE INDICIAL LIFT 
INFLUENCE OF THE WAKE 

Owing to the presence of circulation, the lifting wing 
leaves m its path a surface of discontinuity, the local 
vortex strength of which is determined by the rate of 
change of circulation taken both across the span and 
along the flight path. (See fig. 1.) The distribution 
of vorticity in the wake is determined by the assump- 
tion that the flow field at  each instant conforms to the 

Eutta condition. A n  essential feature of the problem 
is the determination of the influence of this wake on 
the flow at the wing. 

It is important to note that the wake is supposed 
to remain plane and undistorted. As a consequence of 
this assumption, the effects of different wakes are 
additive, permitting the various flows to be built up by 
superposition. Thus, if the solution for the growth of 
the increment of lift following a sudden change of nor- 
mal velocity-or, what amounts to the same thing 
under the assumptions involved, a sudden change in 
the angle of attack-is known, this solution may be 
used as the element in an integral that gives the lift in 
any variable motion. With this point in mind, atten- 
tion will at  first be directed to the special case in which 
the wing starts suddenly from rest at  t = O  with the 

Start 
v, 

FIGURE 1.-Flow caused by wing starting from rest. 

normal velocity w and the flight velocity U,, the 
velocities remaining constant thereafter. 

LIFT NEAR THE START 

The starting lift of any wing may be expressed by a 
simple theorem based directly on the Kutta condition. 
As a consequence of this condition, the portion of the 
wake adjacent to the trailing edge must move as an 
impermeable extension of the wing surface. Thus, the 
first element of wake formed must move with the same 
normal velocity as the wing. The flow produced at  
the first instant is what might be caused by the wing 
in process of growing wider at  the rate U, while moving 
downward with the velocity w. The starting lift may 
then be thought of as the reaction to uniform motion 
3f the wing as a body with increasing mass: 

dm' L=W--- dt 
1 
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where m' is the mass representing the aerodynamic I 
inertia of the wing in normal motion. 

In order to apply equation (1) to the bite wing, 
the inertia factor for such a wing must be known as a 
function of the width. Solutions for elliptic plates are 
given by the classical hydrodynamic theory, and these 
solutions can be used to represent approximately the 
initial rates of increase of inertia of wings of oval or 
elliptic plan form. 

The distribution of potential over each chordwise 
section of an elliptic plate in normal motion has the 
mme form as the corresponding two-dimensional 
potential. Thus 

(2) 
w -  4=&1-x2 

where E is the elliptic integral giving the ratio of the 
semiperimeter to the span. At  the normal velocity 
w=E, the potential distribution over any chord is 
represented by a circle having the chord as diameter. 
(See fig. 2.) If the edge of the plate distorts into a 
slightly wider ellipse, the change in potential arising at 
any point will be measured by the difference between 
the original and the slightly expanded circles. (The 
change in the factor E during widening may be neg- 
lected for ordinary aspect ratios.) The pressure dif- 
ference across the plate with changing potential is giver 
by the formula 

COMMITTEE FOR AERONAUTICS 

Integration of this pressure over any section gives the 
f t  coefficient, for angle of attack a! of the plate, 

a4 a4 p=-2p u,-+- ( bx at) (3: 

4 

Uo dt 
FIGURE 2.-The wake and the distribution of potential over the chord shortly afte 

the start. 

For w= E 
cp= J i = s i n  e (4' 

and, from the geometry of the circle, 

The pressure across the plate with the normal velocit. 
w=E and the flight velocity Uo is, therefore, 

(6 

(7) 

rith each local center of pressure at  the quarter-chord 
IOint. 

The start of the plane elliptic wing being equivalent 
o a uniform lengthening of each chord, the true elliptic 
tutline is not preserved. Such a change, however, may 
)e shown to conform very nearly to a change into 
mother, slightly larger, ellipse at  all points except those 
rery near the tips. Furthermore, if the wing is assumed 
$0 distort in any of a number of ways into a slightly 
lifferent elliptical plan form, the change of aerody- 
iamic inertia will be found to be but little affected by 
he  change in shape and to depend primarily on the 
wer-all change in size. Each such distortion can be 
bought of as representing a certain distribution of the 
starting velocity U around the edge of the wing. 
Equation ( 5 )  is exact for all distortions of this class. 
[nasmuch as t h y  may be made to fall on either side of 
the distortion represented by U= constant (represent- 
ing the start of the rigid wing), the equation is also 
:onsidered applicable to this case. 

. 

THE DOWNWASH CORRECTION 

A reasonably accurate curve of the growth of lift 
might now be drawn by connecting the starting value 

-@- 
Basic flow 

Transformed flow 
FIGUBE 3.-Element of circulatory flow. 

(equation (7)) asymptotically to the known steady 
value given by the Prandtl theory. Calculations have 
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shown, however, that, after the wing has progressed a 
distance of the order of one semispan, the effect of 
finite width of the wake can be treated simply.as a 
modiiication of the angle of attack of the entire wing, 
as in the steady-lift theory. A doser approach to the 
true form of the curve may be obtained by proceeding 
on this basis. 

Before the three-dimensional problem is considered, 
it will be helpful to  review certain aspects of the two- 
dimensional theory (reference 1). In  order to make 
the analysis nondimensional, all velocities are expressed 
in terms of the flight velocity U, and all lengths, in 
terms of the half chord. 

Figure 3 shows the elementary two-diqensional flow 
used as a starting point by Wagner (reference 1). 
This flow is caused by two vortices, representing, re- 
spectively, an element of circulation around the wing 
and the vortex left in the wake when this circulation 
originated. The streamlines of this flow are eccentric 
circles. One such circle (of unit radius) is chosen to 
represent the wing section and the axes are so placed 
that this circle has its center at the origin. The geom- 
etry of the resulting pattern is such that, when the 
wake vortex is at  z, the wing vortex will be at l/z.  
This spacing preserves the unit circle as a streamline 
of the flow. 

Transformation of the pattern by the formula 

1 2y=z+- 
2 

flattens the unit circle into a thin-line wing section and 
distorts the originally circular streamlines into oval 
Joukowski figures. The transformed pattern thus rep- 
resents the circulatory flow around a flat wing section 
with an associated countervortex in the wake. In  the 
transformation, the centroid of wing vorticity remains 
at the position of the original bound vortex while the 
wake vortex is shifted forward somewhat as shown 

Each elementary flow of the type shown contributes 
a certain velocity around the trailing edge of the airfoil. 
The flow due to an instantaneous change of angle of 
attack of the airfoil may be superposed on these flows 
and will contribute a trailing-edge velocity of opposite 
sense. On this basis, the problem of circulation with 
varying angle of attack may be solved by an inverse 
procedure. Assume some convenient distribution of 
wake vorticity and calculate (by integration) the trail- 
ing-edge velocity at  each point along the flight path 
corresponding to the prescribed wake. The particular 
variation of angle of attack necessary to cancel this 
trailing-edge flow at each instant (Kutta condition) can 
then be determined. If a number of such curves are 
found, they may be added in various ratios so as to 
approximate some prescribed variation of angle of 
attack; the corresponding circulation curves are added 
in like ratios. 

(fig. 3). 

In  essentially the manner described, Wagner (refer- 
mce 1) calculated the two-dimensional flow around a 
wing section following a sudden unit change in angle of 
ilttack. The integrated pressures over the airfoil give. 
i~ lift coefficient that asymptotically approaches the 
known steady value 2 ~ ;  whereas. the starting l i f t  
coefficient is found to be exactly one-half this value. 
The center of pressure remains at the quarter-chord 
point throughout the motion. 

In  the case of the finite wing, an element of the wake 
will  be as depicted in figure 3 but will, in addition, 
contain vortices completing each circuit to the wing 
through the tips. The length of the tip vortices may 
be approximated by assuming that they extend to the 
chordwise centroid of the wing circulation. After some 

, 
0 I. 0 

FIGURE I.-Position of the centroid of discontinuity in the wing for different positions 
of the wake vortex. 

calculation, the equivalent length-; of the tip vortices 
in terms of the distance traveled s reduces to 

z= 4 s  (sf2) (9) 

Figure 4 illustrates the rapid travel of the centroid of 
discontinuity within the wing subsequent to its initial 
position a t  the trailing edge.' It is seen that, after a 
travel of several chord lengths, the centroid may be 
taken at  the middle of the wing section. This assump- 
tion will later be used. 

Figure 5 shows how an elementary loop vortex in the 
wake of a finite wing can be formed by cancelation from 
an element of the wake of an infinite wing. The 
downwash induced by segments CD and FH accounts 
for the aspect-ratio effect. Since a uniform distribu- 
tion of the downwash flow is assumed, the calculations 
will be restricted to the center of the wing. By the 
application of Biot-Savart's rule, the downwash velocity 
due to elements CD and FH is found to be 

This expression for downwash may be integrated in 
1 At s=O, the tip vortices are lengtheningat an infbito,rate and, a!though the vortex 

strength IS zero at the heglMLIIg of the motion, the limiting calculation shows that the 
induced downwash flow has a certain rate 01 acceleration at this instant. As a result, 
the starting lift of t,he finite wing is diminished, in accordance with the result of the 
previous calculation. 
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FIGURE 5.-Superposition of vortices to obtain finite loop 

the case of elliptic spanwise loading. 
the circulation around any chordwise section; then 

Let y represent 

b where y=2 cos 0, and r is the value of y at the center 

section. 

Then the induced velocity due to a series of finite loops 
of the form CEF (fig. 5) is given by 

where K (kj  and E (k) are 'the complete elliptic integrals. 
(See Peirce's table.) 

Subtracting the two-dimensional vortex E gives the 
effect of a series of segments of the form of DC and FH, 
distributed along the span according to the elliptic 
lo ad ing . 

Figure 6 shows the variation ol downwash velocity 
with increasing length of the wake as determined by 
this formula. Some additional rough calculations have 
shown that the downwash becomes practically uniform 
over the entire ;wing before the wake has attained a 
lengf h of one semispan. 

Figure 7 shows downwash curves derived from equa- 
tion (14) for elliptic wings of aspect ratios A of 3 and 6. 
In  this derivation, the unit of length was taken as half 
the central chord of tho wing. Thus, the wings have 
the same chords (c,,,=2) but are of different spans. In 

.2 

b 
2" 

. /  

0 4 8 12 I6 20 24 2 8  
Lengfh of  wake, semispans 

FIGURE B.--Qrowth of downwash with increasing length of the wake. r,,=l.O; 
elliptical span load. 

order to define the later portions of the curve, the wake 
was assumed to start with length equal to the mean 
chord b/A in each case. This assumption, though 
somewhat arbitrary, makes allowance for the curvature 
of the trailing edges of the wings. 

10 

08 

06 
W 

.04 

02 

0 2 4 6 8 f0 /L? l4 

FIGURE 7.-Pownwash functions, w#) .  

s half chords 

The induced downwash w( with any variation of 
circulation r(s) along the fight path may be deter- 
mined from the curves given in figure 7 by superposition; 
thus 

ww(s) =wr(s)r,(O) + wr(S-so)r,'(so)dso (15) 

The growth of circulation following a sudden start of 
the motion will be deterlined from the two-dimen- 
sional theory by using the effective normal velocity 

l 

?u,=w-wi=l -U)t (16) 

Let ITom be the rise of circulation following a sudden 
start with unit normal velocity as given by the two- 
dimensional theory. Then, for the finite wing, 

r,(s) = row (8) - row ( s )wf (o)  - 1 row (s - so) Wtl (so)dS0 (1 7) 

The determination of the effective normal velocity 
and the circulation for the finite Wing thus depends on 
the simultaneous solution of integral equations (15) 
and (17). This solution may be conveniently obtained 
by operational methods. 
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+ 0.043e-2.C71S+0*91 Se-0 2!I3S cos 0.095(s-19.135)] 
*=6 = T [ 1.589 - 0.24213-0 .04" - 0.403e-0 .3008 

OPERATIONAL SOLUTION OF INTEGRAL EQUATIONS 

Let D represent the operator dlds and let 1=1(s) 
represent the unit jump function, that is, a function of 
s having the value zero at s<O'and having the value 
1 at s>O. A function of s may be represented by a 
combination of operations on the unit jump function 

@(sj =(a(D) 1 (18) 
The combination of operations s ( D )  necessary to 

.reproduce the function 8 ( s )  is called the operational 
equivalent of the function @(s). 

Rules for finding such equivalents are discussed in 
reference 6. The most general rule for proceeding 
either from 5 to 8, or vice versa, is: 

G8) 

--mi 

The rule needed in the following development is 
the Heaviside expansion theorem: 

where f and F are algebraic polynomials and the A'S 
are the roots of F(A)=O. 

The operational treatment of integral equations is 
based on the proposition that an integral of the form 
of (15) may be regarded as the linear superpgsition of 
the effects of a succession of small jump functions. 
The operational form of (15) is 

- 
wtu (D) =G (QT, (D) (20) 

=FodD)P --Gw(D)l (21) 

and that of (17) 
- 

Solving algebraically for Gtw (D): 

The induced velocity wiw(s) givcs the variation of 
the effective angle of attack of the finite wing when tlie 
geometric angle of attack is held constant. The lift at 
later stages of the motion is then found by combining 
the effective angle-of-attack variation 

We&) = 1 -wm(s) (23) 
with the two-dimensional indicial-lif t function given 
by Wagner. Let CLow(s)=CLo,(s) be the lift in two- 
dimensional flow following a sudden unit jump of angle 
(the curve given by Wagner is for a=1/2n); then, for 
the finite wing: 

e,, (8) = Goa (s> - QLoo (8)Wrw (0) - (8 - ~ o ) ~ i w ' ( s o ) d ~ o  
(24) 

Because the curves given by these formulas are 
considered invalid near the start of the motion, new 
curves having the correct starting values given by 
equation (7) were drawn in as shown (fig. 9). These 
final curves have the useful approximate expressions: 

CLmA3 (8) = 1.200~ ( 1 .OOO - 0.283e-0 .5409) 

CLaA, (s) = 1 . 4 8 ~  (1 .OOO - 0.3 6 le-o.381s) 
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An analogous expression for infinite aspect ratio is 

CLo, (s) = 27r (1  .OOO - 0.1 65e-0 .045s-0. 3 35e-0.300S) (30) 

2n 

0 2 4 6 8 I0 12 14 

FIGURE 9.-Indicia1 lift functions, CL&) and Cr,,(s). 

LIFT IN VARIABLE MOTION 

s I half chords 

In addition to the lift given by the lift function 
CL,(s), the airfoil experiences a reaction equal to the 
instantaneous rate of change of the normal-velocity 
component times the virtual additional mass of the 
wing in normal motion. In  coefficient form: 

Furthermore, if the wing is rotating in pitch, the effect 
of an additional relative camber is introduced. A 
simple integration, making use of well-known results 
of thin-airfoil theory, shows 

where the factor 1 is % for a straight rectangular wing. 
1 a For the elliptic wing, >Z>g7 approximately, being 

somewhat smaller than % because the rotation intro- 
duces a smaller relative camber at  the narrower sections 
toward the tip. 

The effects of combined vertical motion a=- 

and rotation (a=@ may be conveiiiently treated by the 
use of moving axes as shown in figure 10. Vvith these 
points in mirid, the following operational formula for 
the total lift may be derived: 

( a 

W 
FIGURE 10.-Moving axes, a=w/ L?. 

LIFT FUNCTIONS FOR AN OSCILLATING AIRFOIL 

The lift in sinusoidal motion where 

a=j ins  and 8=0 

is given by 
CL, (5) = -2mi"s +ELa (D) eins E 

Since 
&ins - D l  

D-in 

Expansion of this operator gives, with the exception of 
transient terms , 

The function cL, (in) corresponds to the lift func- 
tion C(n) introduced by Theodorsen (reference 2) for 
the oscillating two-dimensional airfoil, that is, in 
Theodorsen's terminology 

- 
CL,(in) =2nC(n) =2s[F(n) +iG(n)] (38) 

The expressions for F f i G  found from the operational 
equivalents of (29) are: 

Figure 1 1  shows these functions plotted against the 
wave length 2a/n of the oscillation. 

rr 

frr 

0 IO 20 30 40 50 60 
Wave lengfh, Znln, holf chords 

FIGURE 11.-Oscillating-lift functions, EL#) = Z w ( F f i G )  and F~;(i?z) =P+iQ. 

Relation (37 )  is especially interesting (see reference 
7 )  because it shows a connection between the Fourier 
and the operational analyses. Thus, if the response of 
a linear system to a continuous sinusoidal excitation is 
k n O W n ,  

Rn(s) =f(in)etns (40) 

then, the function f immediately furnishes the opera- 
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CLp(~)A=B = 1.500?r(l .000-0.448e-0~290s 

C,,, (s) (o = 2.000741 .OOO - 0 .236e-0.058s 
- 0.272e-0*7255- 0.1 93e-3-Oo9 

7 

I (45) 

tiond equivalent of the unit response so that, for any 
variable excitation z(s) ,  

R(s)=f(D)z(s) =f(D)i-(D) 1 (41) 
LIFTIN GUSTS 

The foregoing calculations provide the basis for the 
determination of lift under any prescribed conditions 
of motion of the wing. These results may also be used 
in conjunction with the equations given by Theodorsen 
(reference 2) to predict the air forces on wings with 
hinged flaps. 

In  all cases treated, the airfoil has been considered 
as moving in air that would otherwise be a t  rest. An- 
other problem of considerable interest is the prediction 
of l i f t  during passage of the airfoil through gusts. 
The two-dimensional theory for this case was developed 
by Kussner (reference 3) and has since been corrected in 
certain details by von K&rm&n and Sears (reference 8). 

The basic solution required in the gust problem is 
the solution for a unit sharp-edge gust of uniform up- 
ward velocity. In  order to obtain this solution, it is 
useful to substitute for the change in direction of the 
relative air velocity an equivalent fictitious bending of 
the airfoil in still air such that it has a t  every point an 
angle of attack equal to the angle that would otherwise 
be produced by the gust. 

The effect of a bend progressing along the chord of 
the airfoil may be calculated by thin-airfoil theory 
(reference 9, chs. 111 and IV). A part of the effect 
appears as a change in angle of attack of the airfoil as 
a whole, namely: 

The corresponding part of the lift is obtained from the 
indicial-lift function Cza(s) by superposition. In 
addition, a reaction caused by acceleration of the non- 
circulatory potential flow exists during the time the 
airfoil is partly immersed in the gust. In  two-dimen- 
sional flow, the additional reaction is 

ACz, =2 l / ~  (2 - S) (43) 

No corresponding expression for the finite wing is 
known, but it may be reasoned that the maximum cor- 
rection will be no greater than that indicated by the 
inertia factor of the rigid elliptic disk, l/E. Hence, the 
formula 

ACzg=&I6(2--s) (44) 

was used for the G t e  wings as an approximation. 
The consideration of wings with curvature or sweep- 

back introduces another difEculty into the analysis, 
since the sections of such wings will not strike the edge 
of the gust simultaneously. It is obviously impractical 
to attempt to include in the analysis the effects of the 
many possible variations of plan form, aqd the calcula- 

18081140-2 

f j  A 

c, 

n 

L 
s , half chords 

FIOWE 12.-VarIation pf the lift during pasage through unit sharp-edge wt. A=6. 

MOTION OF AIRPLANE IN GUST 

In most problems that arise in practice, the motion 
of the airfoil, or airplane, will not be prescribed before- 
hand but must be determined from dynamical equa- 
tions. The rising motion of an airplane (or, as it shall 
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be considered here, a loaded wing) while entering a 
sharp-edge gust presents such a problem and will be used 
to illustrate the application of the operational formulas. 

The dynamical equation for this case (neglecting 
pitching motion) is: 

m-+resisting force=impressed force (47) 

where the impressed force is that part of the lift caused 
by the gust. Since 

dw U $ d a  
dt 4 2  ds 

dw 
at 

-e- - 

2m 

2 

where p=-- In  coefficient form, 
8% 

ELDff +c,, (D) f f  =ag (0) f f p  (49) 

Airplune density ratio, J.L =2m/S$c 

FIGURE 13.-Maximm-lift increments developed in flying through a unit sharp-edge 
gust. 

where or, is the change in angle of attack represented by 
the gust. 

For a unit sharp-edge gust, a r = l ;  then (solving 
for a) ,  

By the use of the approximate expressions given for 
C,, and CLg (equations (29) and (45)) , this operator may 
be reduced to the form (19). 

Figure 12 shows the lif t  coefficient C,(s)=pDa(s) 
computed from equation (50) for several values of the 
density ratio p and for A=6. Figure 13, derived from 
similar calculations, gives maximum lift loads attained 
in the sharp-edge gust as functions of the relative 
density. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., June 15, 1959. 
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